May 22, 2020 12:00 Technology
This is a hard question involved with the concept of "monotonic deque".
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.
Follow up:
Could you solve it in linear time?
Example:
Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Constraints:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
1 <= k <= nums.length
Method 1: Traverse the array, and simply compare the next element with the maximum element in the window.
Method 2: Use a monotonic deque to restore the new element if it is larger than the tail of the deque.
class Solution:
def maxSlidingWindow(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
method = 'deque' # ['deque', 'simple']
if len(nums)>0:
if k==1:
return nums
else:
if method == 'deque':
tmp = []
maxlist = []
for i in range(len(nums)):
# only push larger element
while tmp and nums[tmp[-1]] < nums[i]:
tmp.pop()
tmp.append(i)
if tmp[0] <= i-k: tmp.pop(0)
if i >= k-1: maxlist.append(nums[tmp[0]])
return maxlist
if method == 'simple':
tmp = nums[0:k]
maxlist = [max(tmp)]
for i in range(k,len(nums)):
if nums[i] > maxlist[-1]:
nextmax = nums[i]
else:
if maxlist[-1] == tmp[0]:
nextmax = max(nums[i], max(tmp[1:]))
else:
nextmax = maxlist[-1]
maxlist.append(nextmax)
tmp.pop(0)
tmp.append(nums[i])
return maxlist
else:
return []